ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MFP3 Further Pure 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous incorrect result	
	correct answer only	MC

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)
(b)

(c) \& \begin{tabular}{l}
$$
\begin{aligned}
& y=2 x+\sin 2 x \Rightarrow y^{\prime}=2+2 \cos 2 x \\
& \Rightarrow y^{\prime \prime}=-4 \sin 2 x \\
& -4 \sin 2 x-5(2+2 \cos 2 x)+4(2 x+\sin 2 x)= \\
& 8 x-10-10 \cos 2 x
\end{aligned}
$$

Auxiliary equation $m^{2}-5 m+4=0$ $m=4$ and 1
$$
\text { CF: } A \mathrm{e}^{4 x}+B \mathrm{e}^{x}
$$
$$
\begin{aligned}
& \text { GS: } y=A \mathrm{e}^{4 x}+B \mathrm{e}^{x}+2 x+\sin 2 x \\
& x=0, y=2 \Rightarrow \quad 2=A+B \\
& x=0, y^{\prime}=0 \Rightarrow \quad 0=4 A+B+4
\end{aligned}
$$

Solving the simultaneous equations gives $A=-2$ and $B=4$
$$
y=-2 \mathrm{e}^{4 x}+4 \mathrm{e}^{x}+2 x+\sin 2 x
$$

 \&

M1 A1

A1

M1

A1

M1

B1 $\sqrt{ }$

B1 $\sqrt{ }$

B1 $\sqrt{ }$

M1

A1

 \& 4 \&

Need to attempt both y^{\prime} and $y^{\prime \prime}$

CSO AG Substitute. and confirm correct

Their CF $+2 x+\sin 2 x$

Only ft if exponentials in GS

Only ft if exponentials in GS and differentiated four terms at least
\end{tabular}

\hline \& Total \& \& 11 \&

\hline 2(a)

(b) \& \[
$$
\begin{aligned}
y_{1} & =2+0.1 \times\left[\frac{1^{2}+2^{2}}{1 \times 2}\right] \\
& =2+0.1 \times 2.5=2.25 \\
k_{1} & =0.1 \times 2.5=0.25 \\
k_{2} & =0.1 \times \mathrm{f}(1.1,2.25) \\
\ldots & =0.1 \times 2.53434 \ldots=0.2534(34 \ldots) \\
y(1.1) & =y(1)+\frac{1}{2}[0.25+0.253434 \ldots] \\
& =2.2517 \text { to } 4 \mathrm{dp}
\end{aligned}
$$

\] \& | M1 A1 |
| :--- |
| A1 |
| M1 |
| A1 \checkmark |
| M1 |
| A1 \checkmark |
| m1 |
| Al \checkmark | \& 3

6 \& | PI ft from (a) |
| :--- |
| PI |
| If answer not to 4 dp withhold this mark |

\hline \& Total \& \& 9 \&

\hline 3(a)

(b) \& $$
\begin{aligned}
& \text { IF is } \mathrm{e}^{\int \cot \mathrm{xdx}} \\
& =\mathrm{e}^{\ln \sin x} \\
& =\sin x \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(y \sin x)=2 \sin x \cos x \\
& y \sin x=\int \sin 2 x \mathrm{~d} x \\
& y \sin x=-\frac{1}{2} \cos 2 x+c \\
& y=2 \text { when } x=\frac{\pi}{2} \Rightarrow \\
& 2 \sin \frac{\pi}{2}=-\frac{1}{2} \cos \pi+c \\
& c=\frac{3}{2} \Rightarrow y \sin x=\frac{1}{2}(3-\cos 2 x)
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { m1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 3

6 \& | AG |
| :--- |
| Method to integrate $2 \sin x \cos x$ |
| OE |
| Depending on at least one M |
| OE eg $y \sin x=\sin ^{2} x+1$ |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\text { Area }=\frac{1}{2} \int 36(1-\cos \theta)^{2} \mathrm{~d} \theta$	M1		$\text { use of } \frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$\ldots=\frac{1}{2} \int_{0}^{2 \pi} 36\left(1-2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		for correct explanation of $[6(1-\cos \theta)]^{2}$ for correct limits
	$=9 \int_{0}^{2 \pi} 2-4 \cos \theta+(\cos 2 \theta+1) \mathrm{d} \theta$	M1		Attempt to write $\cos ^{2} \theta$ in terms of $\cos 2 \theta$.
	$\begin{aligned} & =\left[27 \theta-36 \sin \theta+\frac{9}{2} \sin 2 \theta\right]_{0}^{2 \pi} \\ & =54 \pi \end{aligned}$	A1 \checkmark A1	6	Correct integration; only ft if integrating $a+b \cos \theta+c \cos 2 \theta$ with non-zero a, b, c. CSO
(b)(i)	$x^{2}+y^{2}=9 \Rightarrow r^{2}=9$	B1		PI
	$A \& B: 3=6-6 \cos \theta \Rightarrow \cos \theta=\frac{1}{2}$	M1		
	Pts of intersection $\left(3, \frac{\pi}{3}\right) ;\left(3, \frac{5 \pi}{3}\right)$	$\begin{gathered} \text { A1 } \\ \text { A1 } \checkmark \end{gathered}$	4	OE (accept 'different' values of θ not in the given interval)
(ii)	Length $A B=2 \times r \sin \theta$	M1		
	$\ldots \ldots \ldots \ldots=2 \times 3 \times \frac{\sqrt{3}}{2}=3 \sqrt{3}$	A1	2	OE exact surd form
	Total		12	
5(a)	$\Rightarrow \lim _{a \rightarrow \infty}\left(\frac{3+\frac{2}{a}}{2+\frac{3}{a}}\right)=\frac{3+0}{2+0}=\frac{3}{2}$	M1 A1	2	
(b)	$\int_{1}^{\infty} \frac{3}{(3 x+2)}-\frac{2}{2 x+3} \mathrm{~d} x$			
	$=[\ln (3 x+2)-\ln (2 x+3)]_{1}^{\infty}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		$a \ln (3 x+2)+b \ln (2 x+3)$
	$=\left[\ln \left(\frac{3 x+2}{2 x+3}\right)\right]_{1}^{\infty}$	m1		
	$=\ln \left\{\lim _{a \rightarrow \infty}\left(\frac{3 a+2}{2 a+3}\right)\right\}-\ln 1$	M1		
	$=\ln \frac{3}{2}-\ln 1=\ln \frac{3}{2}$	A1	5	CSO
	Total		7	

